Unsupervised Feature Learning for RGB-D Image Classification

نویسندگان

  • I-Hong Jhuo
  • Shenghua Gao
  • Liansheng Zhuang
  • D. T. Lee
  • Yi Ma
چکیده

Motivated by the success of Deep Neural Networks in computer vision, we propose a deep Regularized Reconstruction Independent Component Analysis network (RICA) for RGB-D image classification. In each layer of this network, we include a RICA as the basic building block to determine the relationship between the gray-scale and depth images corresponding to the same object or scene. Implementing commonly used local contrast normalization and spatial pooling, we gradually enhance our network to be resilient to local variance resulting in a robust image representation for RGB-D image classification. Moreover, compared with conventional handcrafted feature-based RGB-D image representation, the proposed deep RICA is a feedforward network. Hence, it is more efficient for image representation. Experimental results on three publicly available RGB-D datasets demonstrate that the proposed method consistently outperforms the state-of-the-art conventional, manually designed RGB-D image representation confirming its effectiveness for RGB-D image classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Applicability of Unsupervised Feature Learning for Object Recognition in RGB-D Data

We present a feature extraction method for RGB-D data based on k-means clustering that builds on recent work by Coates et al. Using unsupervised learning methods we are able to automatically learn feature responses that combine all available information (color and depth) into one, concise representation. We show that depth information can substantially increase the recognition performance and t...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Multi-modal Unsupervised Feature Learning for RGB-D Scene Labeling

Most of the existing approaches for RGB-D indoor scene labeling employ hand-crafted features for each modality independently and combine them in a heuristic manner. There has been some attempt on directly learning features from raw RGB-D data, but the performance is not satisfactory. In this paper, we adapt the unsupervised feature learning technique for RGB-D labeling as a multi-modality learn...

متن کامل

Color Image Segmentation Using K-means Classification on Rgb Histogram

-The paper presents the approach of Color Image Segmentation Using k-means Classification on RGB Histogram. The kmeans is an iterative and an unsupervised method. The existing algorithms are accurate, but missing the locality information and required high-speed computerized machines to run the segmentation algorithms. The proposed method is content-aware and feature extraction method, which is ...

متن کامل

Unsupervised Feature Learning for RGB-D Based Object Recognition

Recently introduced RGB-D cameras are capable of providing high quality synchronized videos of both color and depth. With its advanced sensing capabilities, this technology represents an opportunity to dramatically increase the capabilities of object recognition. It also raises the problem of developing expressive features for the color and depth channels of these sensors. In this paper we intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014